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The Frobenius norm of operator QW is minimized with respect to level shift parameters ap-
plied to the zero-order spectrum, where W is the perturbation while Q is the reduced
resolvent of the zero-order Hamiltonian. The stationary condition leads to a simple formula
for the level shifts which eliminates degeneracy-induced singularities. Such level shifts may
increase the radius of convergence of the perturbation series, and may improve low-order
perturbative estimations — as it is found in the cases of a simple matrix eigenvalue problem
and the one-dimensional quartic anharmonic oscillator.
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Perturbation theory (PT) continues to attract investigations due to its un-
solved problems concerning convergence properties, the flexibility of parti-
tioning, and related questions'~®. The theory of resolvents, or Green func-
tions (GF), may serve as a powerful tool to develop new solutions to open
problems in PT. The GF theory being somewhat mysterious to many chem-
ists, a well written didactic survey on the quantum chemical application of
GF has been topical for some time and would be highly appreciated. In this
connection, one of the present authors (P. R. Surjan) feels it necessary to
mention that 17 years ago, looking for a publisher for his book on second
quantization’, Prof. R. Zahradnik, to whom this article is dedicated, kindly
offered many invaluable advises in this matter. Among other propositions,
he suggested to cover also the GF theory in the same volume. It may be a
shame, but P. R. Surjan was not able to follow this advise, not being well
prepared for this task at that time. Since then, we have performed some re-
search in this area®°, but the aforementioned didactic introduction is still
in delay. In the present paper, however, we briefly review an important as-
pect of the GF theory, discussed by Kato! a long time ago, namely its appli-
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cation to the convergence problem in PT. It will be seen that, although the GF
theory alone does not solve the problem of convergence, its suggestive
formal results may induce useful thoughts toward enhancing convergence
properties of the PT series. The encouragement of Prof. R. Zahradnik is
herewith gratefully acknowledged.

Level Shifts in Perturbation Theory

In PT, one starts with an (arbitrary) split applied to the total Hamiltonian
H=HO+w 1)
and normally assumes that the spectrum of H® is known:
HOW© = E@y© )

The well-known PT formulae emerge in terms of these zero-order quantities
and the matrix elements of W in the basis of W,

It has been realized a long time ago, that for any given splitting expressed
by Eq. (1), the partitioning of H can be freely changed by adding and sub-
tracting an operator that is diagonal in the basis W

H=H® + 50 WO 7 +W = 5 0, | W mee], 3

H© W'

where n;’s are arbitrary parameters called level shifts. The level shifts obvi-
ously do not affect the zero-order wave functions, they merely shift the
zero-order energy levels.

Level shift parameters have been applied previously in a number of works
with various purposes-17, With the aim of improving the convergence
properties in particular Feenberg, Goldhammer!®19 Forsberg et al.?°,
Amos?!, Dietz et al.??23 and Finley et a1.?4-?6 have introduced appropriately
chosen shift parameters. Recently, optimal level shifts have been deter-
mined from the condition that the energy perturbed up to the third order
should be stationary with respect to n;’s (refs?1927-31). Here we shall investi-
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gate the applicability of level shift parameters deduced in a different man-
ner.

On the Convergence of the PT Series

It has been known for a long time?! that the theory of GF provides a suffi-
cient condition for the convergence of the PT series. To see this, we con-
sider the operator

G(z) = (z-H)7?, 4)

where H is the Hamiltonian operator, and z is a complex scalar variable. Ac-
cordingly, G(z) is an operator-valued function of z which is called the
resolvent of H or the GF. The resolvent is an analytical function of z except
for the points where z coincides with an eigenvalue of H. In these points
G(z) has simple poles.

An important property of the resolvent operator is that eigenvalues of H
can be extracted from G(z) by a contour integration:

=1
E, = mez TrG(z)dz, (5)

where the integration has to be extended to a path which contains exclu-
sively the k-th (isolated) eigenvalue (cf. Fig. 1). Validity of this statement
can be immediately seen by inserting the spectral resolution of H and per-
forming the integration via Cauchy’s theorem for contour integrals.

If one splits the Hamiltonian to a zero-order part (H% and a perturbation
(W) as in Eqg. (1), and defines

G’(2)=(z-H"" (6)

as the GF of HO, than G(z) fulfils the relation

Fic. 1
Schematic integration contour to get the energy of state k
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G(2) =G°%(2) +G°(2W G(2), @)

which is called the (simple form of) Dyson equations. (The true Dyson
equation emerges after projecting Eq. (7) into a subspace; after this projec-
tion the simple perturbation operator W has to be replaced by a much more
complicated self-energy operator3?.) This result is easily proved by multiply-
ing Eq. (7) by the inverse of G°z) (from the left) and the inverse of G(z)
(from the right), when simply the definition of the partitioning H = H° + W
is recovered.
A formal solution of Eq. (7) looks:

G :(l_G(O)VV)’lG(O) , (8)
which can be expanded into a Taylor series to yield
G =G +GWG? +G WG WG +... 9)

Upon integrating this equation on an appropriate contour term by term
and making use of Eg. (5), one gets:

E, =E» +EM +E®) +... (10)

with E( denoting the i-th PT correction to the energy. Accordingly, the
convergence of this series depends upon the validity of expansion (9) for all
z values touched during the integration. (This contour should embed the
k-th pole of both G and G©.) At a given z value, the convergence of Eq. (9)
is known to depend on the norm of operator GOW: if and only if
[IGO(z)W]|| < 1, the series is convergent.

The above observation is quite interesting since it appears as if we formu-
lated the condition for convergence of the PT series. However, there are an
infinite number of ways how an “appropriate” contour can be set up, and
finding the necessary and sufficient condition for convergence assumes
that one has specified the most suitable path for the integration, which is
usually unknown. Therefore, in practice, this observation yields only suffi-
cient but not necessary criteria for the convergence of the PT series. The ex-
act convergence conditions, necessary and sufficient, therefore, still remain
unknown in the Rayleigh-Schrédinger perturbation theory.
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THE NORM OF QW

Apart from the problem of finding the most appropriate integration path,
i.e. the appropriate z values, it is evident that quantity ||[G@OW]|| plays a de-
termining role in the problem of convergence. One may hope for example
that its minimization for a certain selected z value may improve the conver-
gence properties.

Instead of G©, we shall focus here on operator Q, called the reduced
resolvent. This is an important quantity, related to G©, which is defined
for the ground state as

QE -H®) =1 - Wi ow|. (11)

In spectral resolution it can be expressed as

~ |l_|_)i(0) DEHJi(O)l
Q=3 g (12)

In words, Q is the inverse of (E{” —H®) in the subspace orthogonal to the
ground state. Unlike G©(z), Q is a regular quantity if the ground state is
non-degenerate in the zero-order spectrum. As its name refers to, Q can be
deduced from G©(z) by applying the aforementioned reduction and taking
it at z = E{®). The role of the reduced resolvent in PT can be summarized by
recalling the compact PT energy formulae at the lowest orders:

E®) = avQwO (13)

E®) = WQW - WDQWO (14)

etc. In these formulae, as well as in higher orders, the PT corrections are
constructed from the powers of operator QW. A natural idea appears there-
fore to minimize the square norm of this operator, ||QW]||?> with respect to
any free parameters that are at our disposal.

As discussed above, free level shift parameters can always be introduced
in PT; these, therefore, can be utilized to minimize ||QW]||2. The first thing
one has to do is to choose a norm in the operator space. In this work, we
define the norm of operator A as

Collect. Czech. Chem. Commun. (Vol. 69) (2004)



110 Surjan, Szabados:

[|A||2 = Tr (AAT) . (15)
In a basis set representation this norm is expanded as
A2 =Z A Ay = |Aik|2 ) (16)

that is the two-norm or Frobenius norm in matrix theory.
Evaluating [[QW]||2 with this definition, we get:
llQwWI* = ZIEIQWIKED2
= Z QW KIKWQ|L]
S fQw*Qlit

aw ?|i0

= ;(E( E(O))

where the resolution of identity was used to get rid of the summation
over k. Applying now the level shifts (3), we get

MW ? i+ 2n,GW|iF n?
“QW/”Z — | |0 r](; | | r]| , (17)
[F3 (E,( )_E(())+ni)2

where the level shift of the ground state, n,, was set zero to fix the energy
origin.
To determine n; values that are optimal in this sense, we require

0 )
—[lQW|* =0, (18)
on,

which yields

TK|W ? KO CKIWIKTE” = ES®)
KWK+ (B = EL?)

i
=
1

(19)
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In what follows, level shifts obtained from this relation will be identified as
QW-optimized ones. Similarly, the partitioning defined by them will be re-
ferred to as QW-optimized (QW-opt) partitioning.

PROPERTIES OF THE QW-OPTIMIZED PARTITIONING

First we intend to show that the QW-opt partitioning is unique, i.e., the re-
sulting shifted denominators do not depend on the initial partitioning. To
see this, we evaluate the shifted denominators using abbreviations

A, =E -E®, W, = KW|KO and W, = KW ? kO (20)

+Wki +W A,
Wy +4,
- A2k +Wki +2W, A,
Wi +4,
— Wi +Ak)2 _(Vvkk)z +ka<
Wi +4,

(Wki>c

Wy +4, ’

Ay +n =4,

(21)

:Wkk +Ak +
where the second connected moments of the perturbation operator
vai L= Wki - (Vvkk)2 (22)

are introduced. To arrive at our final formula for the shifted denominators,
we observe that

Wkk +Ak = Hkk _Ef(JO) ) (23)

by which the shifted energy denominators become

A, +n, =H, —E® + :
k k kk 0 Hkk_E(()O)
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In this expression, both the quantities H, —E{” and the connected mo-
ments W2 [} are independent of the initial partitioning. (With no loss of
generality, one can choose W, = 0. This can always be achieved — without
affecting the partitioning — by a simple shift of the origin of the energy
scale. Then, Eé") = Hyo Which clearly expresses a partitioning independence
of Eq. (24).) Therefore we see that the QW-optimization results uniquely
defined energy denominators.

A second property of the QW-opt partitioning can be inferred from (19)
or (24) observing that these formulae do not present explicit coupling be-
tween the states k. (There is, however, an implicit coupling expressed by
the presence of the square of W in the connected moments.) This
uncoupled nature of QW-optimization makes it markedly different from the
energy-optimized partitionings?27-31.3% where the coupling between differ-
ent states represents a serious computational difficulty. The simplicity ex-
hibited by Egs (19) or (24) is a great advantage from the computational
point of view, but gives a warning that the power of this simple optimiza-
tion might not be strong enough.

The same conclusion is supported by the observation that the QW-opt
denominators are numerically often quite close to the so called Epstein-
Nesbet (EN)3435 denominators Hy, — Hyo. Namely, if Wy, = 0, the EN parti-
tioning results from Eq. (24) simply by neglecting the second connected
moment of W; which is supposedly a small quantity. The results obtained
in the QW-opt partitioning for modest perturbations will thus be close to
those of the EN partitioning. Moreover, since the correction term
W20 /(H, — E?) is always positive, the QW-opt denominators are slightly
larger than the EN ones. Low-order corrections, therefore, are expected to
be in absolute value smaller in QW-opt partitioning as compared with EN
corrections.

An interesting property of the QW-opt partitioning is associated with the
fact that all shifted denominators are definitely positive. This is because
(H, —E”) =0 by definition and the second connected moments W2 [} are
always positive quantities (these moments are zero if and only if evaluated
with an exact eigenfunction of H, when all PT corrections are zero anyway).
Accordingly, any possible degeneracy of the zero-order spectrum will be
lifted upon QW-optimization.

To have a closer look into the degeneracy problem, let us evaluate the
limit of the second-order QW-opt correction when a particular state k be-
comes degenerate with the ground state. As Eq. (24) indicates, n, tends to
infinity in this limit, thus the contribution of this state to the second-order
correction becomes zero. This is not the accurate value that would be ob-
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tained from degenerate PT, but it is certainly a better estimate than the di-
vergent result of non-degenerate PT. The result of QW-opt partitioning in
such a degenerate limit will be the elimination of the effect of degenerate
levels, a damping of quasi-degeneracies, while summing up slightly modi-
fied EN-type contributions from non-degenerate states.

The difference between the EN and QW-opt partitionings is expected to
be major if the perturbation is strong, i.e., if W, ] values are large. In these
cases QW-optimization appears to be a promising tool. The accuracy of the
results, however, can only be checked by numerical calculations.

NUMERICAL ILLUSTRATION

Due to the close relation between QW-opt and EN partitionings, we cannot
expect the former to be very useful to treat electron correlation effects
where the Mgller-Plesset®® partitioning is usually superior to the EN parti-
tioning. There are however, special situations when QW-optimization is
advantageous. In this paper we shall illustrate this on a matrix diagonali-
zation problem and on the example of the anharmonic oscillator.

Perturbing a 2 x 2 Matrix

First we study a simple two-by-two matrix eigenvalue problem. This is a
rather special example but allows a detailed investigation of the perfor-
mance of QW-optimization.

Consider the Hermitian matrix and its splitting to a zero-order part and a
perturbation

0a wg @ 0 0O O w0
=y o0 bend Hy -n (25)
H©) W
The reduced resolvent is
_ 1 0 0O
Q= b—a+r]H) 10 (26)

The second-, third- and fourth-order corrections, respectively, turn out to be:
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E® " TbTaih (27)
g9 =W (28)
b-a+n)®
and
2 _ 2
E@ =w? L0 (29)
b-a+n)®

From the condition that |[|QW/||? is minimal, one obtains the optimal value
of n:
W2

b-a’

n= (30)

Substituting this value into the above results, one obtains the QW-opt cor-
rections, while the standard Rayleigh-Schrdodinger PT formulae in the EN
partitioning emerge by setting n = 0. These should be compared to the ex-

act eigenvalue
=P*a_ Fg rw? (31)
2 2

In Fig. 2 we plot the energy corrections up to the 4th order as a function of w,
choosing a = 1 and b = 2. Figure 2a shows that for small w values all
low-order energies are accurate, but they behave differently as w increases.
The standard second- and fourth-order corrections (i.e., those with n = 0)
deviate from the exact curve to the largest extent. When using optimal n’s,
the second- and fourth-order curves remain close to the exact one, while
the third-order result is less accurate (note that odd-order corrections are
zero in the standard partitioning).

In a wider interval, Fig. 2b depicts the energy errors of the same energies.
Again, the standard second- and third-order results diverge very soon, while
the optimized curves exhibit a systematically improving behaviour with in-
creasing order.
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Anharmonic Oscillator

A physically more interesting example is provided by the quartic anhar-
monic oscillator described by the Hamiltonian

2
d +1X2 e

32
dx? 2 (32)

HO) = -2

where the coupling parameter y is a measure of anharmonicity. This system
has been extensively studied®’-*1, and it is known37#2 that if choosing H® =

1.00

0.95

0.90

Lower root

0.85

0.80

-2

Deviation from the exact root

Fic. 2
Eigenvalue corrections for matrix (25) as a function of parameter w measuring the strength of
perturbation. a Eigenvalue estimates, b differences of estimated eigenvalues from the exact one
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H(y = 0) as the zero-order Hamiltonian, the Rayleigh-Schrédinger PT series
is divergent for any y #0. It appears interesting, therefore, to study the con-
vergence properties of the QW-opt partitioning for this case. For compari-
son, we have studied also the performance of the EN partitioning343% where
one applies level shifts so that W, = 0 for all k. In the present work, we per-
formed a numerical study by evaluating large order energy corrections, for
various y values. The choice H° = H(y = 0) will be referred to as the “stan-
dard” partitioning. Finally, the QW-opt partitioning results if using the
shifted denominators of Eq. (24).

Figure 3 shows the convergence of the PT expansion for small and me-
dium vy values. It is well illustrated that the PT series in the standard parti-
tioning is never convergent, while the EN partitioning may converge for
very small y. It may of course also be possible that the EN results also start
to diverge at higher orders. This is illustrated in Fig. 3b showing results for y =
0.1, where the EN corrections seem to converge up to order 30, from where
they start to diverge — a typical sign of asymptotic convergence. The results
obtained in the QW partitioning turn out to be the best for all cases as to
their convergence properties, although its low-order estimations are not
necessarily more accurate. This holds even for y = 1.0 where the EN results
start to diverge already from low orders, while the QW-opt corrections seem
to be smoothly convergent.

To see the convergence numerically for a large value of the coupling con-
stant, we evaluated the PT corrections in QW-opt partitioning for y =50 up
to order 2500. The results are plotted in Fig. 4 for the large-order part and
some of them are collected in Table I (the results of the EN partitioning are
not computed here since the corresponding PT series is divergent even for
smaller y values). The results not shown in the table are available from the
authors upon request via e-mail, surjan@chem.elte.hu or szabados@
chem.elte.hu. At order 2500, the energy still does not seem to be converged
to 4 digits, since the energy contributions are of the 10° order of magni-
tude. This shows that the convergence is very slow, but there is no apparent
sign of divergence.

The above results indicate that, while the convergence radius for the
quartic oscillator in the standard partitioning is zero, the EN and QW-opt
partitionings may result in finite convergence radii. For the EN partition-
ing, the convergence radius is certainly small, and the case of asymptotic
convergence cannot be excluded. In the case of the QW-opt partitioning,
the convergence radius seems to be quite large, and it might also be possi-
ble that it is infinite. To decide this, further numerical and - preferably —
analytical calculations are required.
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Fic. 3
Convergence of the perturbed energies of the quartic anharmonic oscillator up to the 50th or-
der for various (medium) coupling constants y: 0.025 (a), 0.1 (b), 1.0 (c). Standard (O), EN (4),
QW-opt (©)
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COL?::génce of the PT series for the quartic anharmonic oscillator in the QW-opt partition-
ing for y = 50
n E Z E'

1 0.0 38.0000000

2 —6.79284227 31.2071577

3 -4.11989193 27.0872658

4 —2.77990065 24.3073652

5 -2.01212717 22.2952380

6 -1.52904999 20.7661880

7 -1.20396842 19.5622196

8 -0.97398290 18.5882367

9 -0.80487850 17.7833582

10 -0.67667558 17.1066826

20 -0.20208716 13.6355834

40 -0.05365966 11.6116823

60 -0.02326577 10.9166085

80 -0.01246184 10.5801887

100 -0.00752193 10.3884604

200 —0.00136293 10.0577779
300 -0.00044720 9.97848353
400 -0.00019358 9.94884744
500 —0.00010029 9.93488668
600 -0.00005955 9.92716938
700 -0.00003946 9.92233745
800 —0.00002853 9.91899457
900 -0.00002208 9.91649326
1000 -0.00001797 9.91450714
1500 —0.00000934 9.90814155
2000 -0.00000600 9.90439782
2500 -0.00000407 9.90192042
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Fic. 4

Large order behaviour of perturbed energies of quartic oscillator in the strong-coupling limit
(y=50)
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